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Vector Potential Remap for 2d MHD*

Peter W. Rambo
Lawrence Livermore National Laboratory

This report describes an algorithm to remap (rezone) the magnetic vector potential in
2D MHD calculations. This extends a previously described Lagrangian scheme [1] for use
with ALE grids, when combined with a  suitable remap capability for the hydrodynamic
variables. In this scheme, the magnetic field B is a zone quantity derived from the node
based vector potential A (Bx, By , and Az in Cartesian geometry, Bz, Br , and Aφ in cylindrical
geometry). The scheme outlined here is closely related to a flux conserving remap of the
magnetic field. Because B is derived from the updated vector potential, however, flux
conservation and vanishing divergence are guaranteed; only accuracy is a concern. This is
in contrast to schemes based directly on B, which require the additional constraint of
preserving zero divergence [2, 3]. Beginning with Cartesian geometry, a straight forward
development of the algorithm is first presented; an alternative view is then considered
which makes clear the relationship to a flux conservative remapping of the zonal magnetic
field. Examples comparing first and second order algorithms are shown, and the issue of
energy conservation is discussed.  Finally, the generalization to cylindrical geometry is
given.

Figure 1 shows a diagram of a single quadrilateral zone, or cell,  in the computational
mesh defined by the surrounding node locations r n. In Cartesian geometry, the zonal
magnetic field, Bc, is determined from the z-component of the nodal vector potential, An. In
particular, we wish to know how to change An

0 to An
t due to moving a node δr n≡r n

t-rn
0,

where superscripts “0” and “t” will denote the original and remapped quantities
respectively. We consider a surface perpendicular to the simulation plane with normal
directed  area δS=δr n× ẑ . Then the magnetic flux through this surface is related to the line
integral of the vector potential,

B dS A dS A dl∫ ⋅ = ∇ ×∫ ⋅ = ⋅∫ . (1)

Applying this to the surface defined above,
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Thus we need only calculate the integral of the magnetic flux to determine the change in the
vector potential. Assume that within the cell, B(r) has linear variation about the average
value relative to the cell centroid r c,
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The gradient terms within a cell are determined by suitable approximation using
surrounding cell values, and will be discussed later. Substituting Eq. (3) into Eq. (2) and
performing the integration,
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This defines an effective node magnetic field associated with the remap that is simply
Eq. (3) evaluated at the intermediate node position. This is a second order algorithm, with a
first order upwind scheme defined by neglecting the gradient terms. The new magnetic
field is then determined from the updated mesh and vector potential; in Cartesian geometry
this is given by,

B rc c nn
c n c n c

n nV A A A A≡∑ ≡ −( )+ −∆ ∆, ,, ,1
2 1 1 (5)

with all quantities evaluated at the new time level.
This remap is closely related to a flux conserving rezone of the magnetic field. If one

specializes to one dimension, say with By varying in x, the (transverse) magnetic field is
simply a zone defined scalar. Then an exact correspondence exists between this scheme
and a conservative rezone of By. Eq. (4) with the gradient terms set to zero corresponds
exactly to donor cell advection; similarly, Eq. (4) with appropriately limited gradients is
equivalent to a monotonic second order advection. In two dimensions, the vector nature of
B complicates this, but an interesting correspondence still exists. Dukowicz and Kodis [4],
and Ramshaw [5] have developed efficient methods for conservative rezoning of zonal
scalar quantities on a quadrilateral mesh. This is based on defining the zonal quantity as the
divergence of a vector field; then the volume overlaps between the old mesh and an
arbitrary new mesh may be calculated as surface integrals. An analogous method for a flux
conserving rezone of the magnetic field is possible by defining the vector potential in each
cell of the old mesh as,

A c c c c( ) ˆ ( ) ( );r z B r r r B r r= × + − ⋅ ∇( ){ } × −0 1
2 (6)

the curl of Eq. (6) is exactly Eq. (3). Now a conservative rezone of B could be
accomplished by calculating overlap integrals between the new and old mesh as surface
integrals over A. Because the vector potential prescribed above is not continuous from one
zone to an adjoining zone, care must be taken in accounting for delta-function contributions
at old zone edges, exactly as prescribed in Ref. [5]. This rezone would not necessarily
preserve zero divergence, so a divergence clean would then be necessary. The present
scheme may be regarded as preparing to do a conservative remap in the same fashion, but
instead of calculating volume overlaps of B, the zone defined vector potential, Eq. (6), is
evaluated at the new node location and from this a new divergence-free magnetic field is
calculated. Because of possible discontinuities across zone boundaries, the change in An is
calculated; taking the difference between Eq. (6) evaluated at both new and old node
positions is exactly the same as Eq. (4).

Because the magnetic field calculated from the new vector potential is guaranteed to be
divergence free, no effort seems necessary to ensure that the linear magnetic field of
Eq. (3) is similarly solenoidal. Thus all four gradient components are limited independently
and -(∂Bx/∂x)c ≠(∂By /∂y)c. Dukowicz and Kodis [4] describe methods for approximating
these limited gradients based on the values of the gradients at the four nodes surrounding a
zone. Finally, although presented here as though the node position were being moved an
incremental distance, this is not necessary; the new mesh may be entirely unrelated to the
old mesh. All that is required for application of the algorithm is to determine which old
zone contains the new node position, and which old node is in closest proximity.

Several examples are now presented to demonstrate this remap algorithm. The
advection of a square pulse on a fixed grid in one dimension is a standard test; Fig. 2
shows results of advecting an initially square By profile in the x-direction for 200 ∆t, with a

Courant number u0∆t/∆x=0.2. The solid line shows results from the second order
algorithm, Eq. (4), with the field gradients limited using the monotonic limiter described in
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Ref. [4]; similar results were also obtained using the van Leer limiter. The dashed line
shows results for the first order remap given by neglecting field gradients, which is seen to
be very diffusive. As previously discussed, this remap in one dimension is exactly
equivalent to a conservative rezone of By; the results in Fig. 2 clearly resemble typical
results for conservative advection schemes. This remap algorithm is also equivalent to an
advection (δrn≡unδt) of the vector potential with a particular definition for the gradient,

A A t A A
n n
t

n n n n
A= + ⋅ ∇( ) ∇( ) ≡ ×0 δ u z B, ˆ . (7)

This choice ensures monotonicity (at least in one dimension), and thus removes this
criticism of vector potential schemes for MHD [2].

Although magnetic flux conservation is guaranteed, energy conservation is not. For
the square wave advection test above, the field energy has decreased 23% for the low order
remap, and 16% for the second order remap. The change in energy caused by the remap
may be investigated by linearizing the change in field energy of the four zones surrounding
a node that is being moved. There are two contributions: the first contribution from node
displacement (constant potential) is related to the energy conserving node force [1]; the
second contribution comes from the change in potential, and may be recognized as an
electric field dotted with the node current, I n. Defining a node magnetic field associated
with the J×B force, as well as the one associated with the advection,

F I B z B rn n n
F
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the remap change in energy associated with a node displacement can be written as,
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This change in energy is not necessarily dissipative; simple examples may be constructed
which have positive energy change. An energy conserving remap is readily apparent by
choosing the advection magnetic field equal to the field associated with the force, but
stability would be sacrificed because of the loss of upwinding. Alternatively, one might
adjust the fluid internal energy for conservation; this could be done through Eq. (9), or by
advecting the sum of internal energy and field energy, then subtracting the field energy
determined by the flux remap to find new internal energy. Because the remap is not
guaranteed to be dissipative, however, this seems a risky proposition. Clearly the energy
change due to the remap should be monitored to ensure it is properly small. Interestingly,
since the magnitude of this energy change depends on the lack of spatial centering, use of
the purely upwind field Bc can aggravate the rate of energy increase, as well as amplify the
rate of dissipation compared to a second order algorithm.

As a non-trivial two dimensional example, results are now presented for a magnetized
Kelvin Helmholtz instability, a problem investigated by Malagoli et al. [6]. In their work,
the unstable magnetized shear flow is simulated through nonlinear saturation using a high-
order Godunov MHD code. Here, the identical case is simulated using a PIC-MHD code;
in this code the fluid equations are solved using particles to advect the hydrodynamic
information through the grid [7]. Unlike Brackbill’s FLIP-MHD code [8], however, the
PIC particles represent only the hydrodynamics, while the magnetic field is purely a grid
quantity, advanced during the Lagrangian step as described in Ref. [1] and remapped to the
original square grid (mesh spacing ∆) as prescribed here. Because of the energy conserving
properties of the PIC hydrodynamics, essentially the only dissipation is from Ohmic
heating (diffusion coefficient Dm) and the field remap. The system is initially prepared with
the fluid density uniform in space (ρ0), as is the field which is initially aligned with the x-
direction; a shear flow is initialized with ux=u0 tanh(y/a). The simulation region is 0<x<L
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and -L<y<L with periodic boundary conditions in x and reflecting walls at y=±L. For the
case to be presented here the shear gradient parameter a/L=0.05, and u0/Cs =0.5, Cs the
adiabatic sound speed; the initial field strength is parameterized by the Alfven speed,
Va/Cs=10-3. The fluid velocity is initially perturbed in the y-direction at the level of a few
percent, with wavelength equal to the system length. Figures 3 and 4 show results from
simulations with L/∆=100, and a magnetic Reynolds number Rm≡Lu0/Dm=1000. The
remap of the vector potential uses Van Leer limiting. Contours of constant vector potential
are shown in Fig. 3 at times corresponding to peak field energy, Cst/L=5.0, and after
saturation and reconnection, Cst/L=8.0. The time history of the magnetic field energy is
shown in Fig 4, as well as the rate of energy dissipation due to the field remap, which
shows for a brief period of time near peak amplitude that the change in field energy due to
the remap is positive, rather than dissipative. For these parameters, the total change in
energy due to the remap is less than 40% of the initial field energy; the energy dissipated
due to Ohmic heating is approximately ten times greater.  Also shown in Fig. 4 are results
from an otherwise identical simulation, but using the first order remap. As can be seen by
comparing the rate of energy change due to remapping for the two cases, the rate of
dissipation and energy increase are both accentuated by the low order scheme. The time
and peak value of the magnetic energy compare well with the results of Malagoli, although
it should be stressed that in the simulations of Ref. [6], no explicit field diffusion is
included and the dissipation is only due to numerical causes.

This scheme may be applied to axisymmetric simulation by generalizing the
integration that leads to Eq. (4). Now the integration is over a surface of revolution about
the cylindrical axis, introducing factors of 2πr in both the surface and line integrals,
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The first term is the zero order result, followed by corrections for second order.
                                                
*   This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.
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Fig. 1 Diagram showing quadrilateral zone defined by node vectors (left), and geometry
of surface integral (right) for displacement of node-n into zone-c.
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Fig. 2 One dimensional advection test at time t = 200 ∆t = 0.4 L/u0; solid line is result
with second order monotonic limited remap and dashed line shows result from first order
remap; initial profile was square wave with width of 0.2 L=20 ∆x.
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Fig. 3 Contours of constant vector potential at time near peak field magnitude, and well
after saturation (Cst/L=5.0 left, and Cst/L=8.0 right).
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Fig. 4 Time histories from calculation presented in Fig. 3  of magnetic field energy and
rate of change of magnetic field energy from remap: using second order Van Leer limited
remap (solid line), and from calculation using first order remap (dashed line). Time is
normalized to τ0≡ R0/Cs and energy to ε0≡ ρ0Cs
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